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Abstract

The supplementary material contains: (1) Architecture
details, (2) Dataset Details, (3) Additional Implementa-
tion Details, (4) Junction Learning, an additional related
task for multi-task learning, (5) Additional ablation study,
(6) Additional qualitative results for DeepRoadMapper [5],
Topology Loss [6], LinkNet34 [2], Stacked Multi-branch
(Ours) (7) Qualitative results of Orientation prediction
overlay on the image, and (8) Qualitative result for Con-
nectivity refinement.

1. Architecture Details

We use encoder-decoder structured model with two in-
termediate stacks of multi-branch module to predict orien-
tation and segmentation at different scales. We perform
downsampling in the model using 2 × 2 max pool layer.
We use three basic Resnet [4] blocks in the shared encoder
and multi-branch module. We add BatchNorm layer af-
ter each convolution layer. The shared encoder reduces the
input resolution to H/4,W/4 using the strided convolu-
tion and max-pool layer, which is fed to the multi-branch
module. The shared encoder and final decoder has 64, 64,
64, 128, 64, 32 channels and each multi-branch module has
128. The final decoder block uses bottleneck deconvolution
similar to LinkNet [2]. There are 29.02 Million parameters
in the joint model.

2. Dataset Details

We perform our experiments on the two challenging road
datasets Spacenet [8] and DeepGlobe[3] to assess the signif-
icance of orientation learning task. In the current scope we
utilize only 3-Band RGB image of both datasets to detect
the curvilinear road structures.
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Spacenet [8]: This dataset provides imagery from four
different cities: Paris, Las Vegas, Shanghai, and
Khartoum. The imagery is available at ground resolu-
tion of 30cm/pixel and pixel resolution of 1300 × 1300
in GeoTiff format (16-bit). Dataset consists of differ-
ent road types (Motorway, Primary, Secondary,
Tertiary, Residential, Unclassified, Cart
Tracks) from the four cities, having diverse road widths
and visual appearance. Road annotation is provided in the
form of line-string, representing the center line of roads.
Each image may have multiple line-strings and each line-
string consists of pixel coordinates {X Y} depicting road
centerline points in the 2D image plane, assuming top-left
corner as the origin.

The public dataset consists of 2567 images with road
vector data as labels. We split the dataset into 2000 images
for training and 567 for testing. When we split the imagery,
each city equally contributes to train (80% per city) and val-
idation set (20% per city). To augment the training dataset
we create crops of 650×650 with overlapping region of 215
pixels, thus providing ∼32K images. For validation we use
the crops of same size without overlap. For fair compari-
son with other datasets, we also convert 16-bit imagery to
8-bit using MinMax scaling followed by adaptive histogram
equalization on each channel independently.

DeepGlobe [3]: It includes GeoTiff imagery from
three different areas: Thailand, Indonesia, and
India. The ground resolution of 3-Band RGB image is
50cm/pixel and pixel resolution is 1024 × 1024. Pixel
level annotation is provided for road and background
classes. It contains 4696 images for training phase and
1530 for validation. We augment it by creating crops of size
512 × 512 with overlapping region of 256 pixels, yielding
∼42K images for training phase.

We evaluate and report the road connectivity metrics on
full resolution images at inference time for each dataset.
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3. Addition Implementation Details
An identical training procedure for all the experiments is

implemented in PyTorch [7] framework and the parameters
of each model are initialized with He et al. [4]. Segmenta-
tion outputs from the joint learning module is converted into
network graph with each linear road segment representing
an edge. We perform simple graph processing to remove
the duplicate edges and small hanging road segments. The
proposed graph is converted into line strings and used it to
evaluate the connectivity metric APLS [8] of road network.

4. Junction Learning
We perform experiments to show that the improvement

in road connectivity is due to the proposed task in contrast
to the multi-task learning [1]. We develop another related
task of classifying the junctions and road tracing points, de-
scribed as Junction Learning. We convert the road mask
into a graph. If node of the graph has a degree more than
3 then we consider the node of a graph as road junction,
otherwise node is assumed to be a tracing point of road.
The junctions and tracing points are generated using a dis-
tance transform with Gaussian kernel as shown in Figure.1.
We use pixel wise loss to learn junctions with three classes:
background, tracing points, junctions.

Background Tracing PointsRoad Mask Junctions

Figure 1: Ground truth for Junction Learning

5. Ablation Studies

Quantization Size Spacenet DeepGlobe
road IoUa APLS road IoUa APLS

5◦ 63.35 63.12 66.62 72.39
10◦ 63.75 63.65 67.21 73.12
20◦ 63.80 63.01 67.02 72.75

Table 1: Effect of different quantizations on orientation an-
gles in the proposed stacked multi-branch module. road
IoUa: accurate pixel based intersection over union. APLS:
average path length similarity on the extracted graph from
road segmentation.

Quantization of Orientation Angles: We perform ab-
lation study on the different quantization levels for orien-
tation angles and report the results in Table.1. The results
shows that quantization of 10◦ is good choice for better road
connectivity and we use it in all the comparison methods.

Road Width of Spacenet Mask: We convert the road
line strings of Spacenet dataset [8] using distance transform
with Gaussian kernel along the center line of roads. This
provide a choice to choose threshold corresponding to dif-
ferent road widths. We perform experiments with differ-
ent thresholds (as shown in Figure.2) using LinkNet34 [2]
model and choose the threshold of 0.76 in all the experi-
ments. The threshold of 0.76 correspond to road width of
6-7 meters.

Figure 2: Effect of different road widths for Spacenet [8]
Road masks using LinkNet34 [2] model on the connectivity
metric APLS.

6. Qualitative Comparisons
We present the qualitative comparison with state-of-art

segmentation based methods DeepRoad Mapper [5], Topol-
ogy Loss [6], LinkNet34 [2] in Figures.3, 4, 5, 6, 7, 8.

7. Qualitative Results of Orientation
We present the qualitative results for orientation and seg-

mentation prediction in Figures.9, 10, 11, 12 from our ap-
proach.

8. Qualitative Results of Connectivity Refine-
ment

We present the qualitative results of connectivity refine-
ment over orientation and segmentation learning in Fig-
ures.13, 14 via LinkNet34 [2] as joint learning module.

References
[1] R. Caruna. Multitask learning: A knowledge-based source of

inductive bias. In ICML, 1993. 2



[2] A. Chaurasia and E. Culurciello. Linknet: Exploiting encoder
representations for efficient semantic segmentation. In VCIP,
2017. 1, 2, 4, 5, 6, 7, 8, 9, 14, 15

[3] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang,
S. Basu, F. Hughes, D. Tuia, and R. Raskar. Deepglobe 2018:
A challenge to parse the earth through satellite images. In
CVPRW, 2018. 1

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1, 2

[5] G. Máttyus, W. Luo, and R. Urtasun. Deeproadmapper: Ex-
tracting road topology from aerial images. In ICCV, 2017. 1,
2, 4, 5, 6, 7, 8, 9

[6] A. Mosinska, P. Márquez-Neila, M. Kozinski, and P. Fua. Be-
yond the pixel-wise loss for topology-aware delineation. In
CVPR, 2018. 1, 2, 4, 5, 6, 7, 8, 9

[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NIPSW, 2017. 2

[8] A. Van Etten, D. Lindenbaum, and T. M. Bacastow. Spacenet:
A remote sensing dataset and challenge series. arXiv preprint
arXiv:1807.01232, 2018. 1, 2



Figure 3: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 4: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 5: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 6: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 7: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 8: Qualitative Comparisons with state-of-the-art methods - DRM: DeepRoad Mapper[5], TL: Topology Loss [6],
L34: LinkNet34 [2]



Figure 9: Qualitative results of Orientation and Segmentation prediction of Ours method. Orientation GT and Prediction are
visualized as overlay on the image.



Figure 10: Qualitative results of Orientation and Segmentation prediction of Ours method. Orientation GT and Prediction
are visualized as overlay on the image.



Figure 11: Qualitative results of Orientation and Segmentation prediction of Ours method. Orientation GT and Prediction
are visualized as overlay on the image.



Figure 12: Qualitative results of Orientation and Segmentation prediction of Ours method. Orientation GT and Prediction
are visualized as overlay on the image.



Figure 13: Qualitative results of Connectivity refinement over segmentation and orientation learning with LinkNet34 [2] as
joint learning module.



Figure 14: Qualitative results of Connectivity refinement over segmentation and orientation learning with LinkNet34 [2] as
joint learning module.


